
File System (OS)

Dan Lyu

June, 2021

Q1 Diagram and Metadata

Q2 Partitions

Suppose x is the total number of blocks available, the inode takes up n bytes with padding
(depending on the final size), b is the block size (4096 bytes in the given header file) and i0
is the total number of inodes given as parameter.

This means one block can hold m = (b/n) inodes.
The total number of block bitmaps (in blocks): bm = dx/8be. This guarantees that the

block bitmap blocks can hold all blocks in the FS.
The total number of blocks of inodes would be: i = i0/m.
The total number of inode bitmaps (in blocks): im = di/8be.
The FS will first partition the superblock, inode bitmap and block bitmap. The indices

will be stored in superblock as extents (start and count).
The FS will then allocate i blocks for inodes.
The rest of the blocks will all be data blocks.
Free inodes and data blocks will be tracked in their bitmap blocks. The extents of all

bitmap blocks and inode blocks are stored in the superblock.

1



Q3 File Extents

The extents are stored in the inodes. One inode holds 11 direct extents as a list (88 bytes
in total for 11 direct extents). The inode then holds a block index of an indirect block. Since
the given block size is 4KB, the indirect block can hold up to another 512 extents. The index
of the indirect block will be NULL when the file has less than or equal to 11 extents.

Q4-5 Extents Allocation

The FS will first navigate to the corresponding inode of the file (Q10) and find its existing
extents. When the action is done, the FS modifies the last modification timestamp in the
inode and update the file size.

Method 1: The FS will seek the bitmap and find the closest free space that can hold the
new extent, write the data and modify the inode to add the new extent.

Method 2: The FS will check the bitmap and if the last existing extent has free space
right after it that can hold the indirect extent block. The FS will then allocate the extent
there. If this is not the case, execute method 1.

Case 1: The file has no extent. The FS uses method 1.
Case 2: The file has less than 11 extents. The FS uses method 2.
Case 3: The file has 11 extents. The FS will check the bitmap and allocate a new indirect

block in the closest location to hold the new extent. The FS then uses method 2 to exam
the 11th direct extent.

Case 4: The file has more than 11 extents. The FS will navigate to the indirect block
and find the last extent. The FS then uses method 2.

Special Case: There doesn’t exist any space for the new extent after checking the bitmap.
The extent has to be broken up into multiple small extents. The FS will find the largest
extents that are available and break the new extent into the least amount of extents then
allocate them sequentially (from block index 0 to the last block). All extents information
will be kept on the inode or its indirect extent block. If there’s no enough space even after
collecting all the small extents, throw an error.

The FS prioritizes file fragmentation over external fragmentation since it looks for a
sequential block for the new extent (method 2). If the condition wasn’t satisfied, it aims for
less external fragmentation by filling in the holes. It always allocates a single extent unless
there’s not enough space.

Q6 Truncation and Deletion

The FS will navigate to the corresponding inode and find the last extents that need to be
freed. It sets all their corresponding blocks’ bits to 0 in the bitmap. The FS then modifies
the last modification timestamp in the inode and update the file size.

If the file is to be removed, the FS will navigate to its containing directory’s data block
and compact the remaining valid entries in that extent. This fills in the removed entry.

The FS will then set all its occupying data blocks’ bits and its inode bit to 0 in bitmap
blocks.

2



Q7 Seeking to a specific byte

Find the block number (bnum = offset/blocksize) and the bytes offset in that block (boffset =
offset % blocksize). (From overview slides)

Navigate to the inode and check if the block number is in its direct extents. We add up
all the blocks count in the direct extents, suppose the sum of all existing blocks is m.

Yes: This means bnum < m. We get the extent starting index and find the block (i.e.,
map the block number to the actual block index using extents). Navigate to the block
and read the byte at boffset.

No: Navigate to the indirect block and find the actual block index by checking its
extents. Then use boffset to get the byte in the data block.

If the bnum is larger than the total number of blocks (all counts in direct extents + all
counts in indirect extents block), return error.

Q8 Inodes

To allocate an inode: Check the bitmap and find the closest 0 bit. Navigate to the first
inode block and offset the index to create a new inode in the table. Then set the bit in the
bitmap to 1.

To free an inode: Set the inode bit to 0.

Q9 Directories

To allocate a directory entry: Create a new a1fs dentry struct and add it to the list of
entries if there’s enough space. If not, create a new extent that’s 1 block in size (how big
should the extent be?), add its metadata to the inode of the directory and write the new
entry to the first block in the extent. If the directory contains equal to or more than 11
extents, allocate a new indirect extent block or navigate to the indirect extent block and add
a new extent there according to the methods mentioned in Q4.

To remove a directory entry: Shift all the directories that are right to the directory to the
left to fill in the directory entry to remove. If there’s no other directory entries in the whole
extent, truncate the directory in the inode and mark the blocks in the removed extent to 0
in the bitmap.

Q10 Path

Navigate to the first inode, which should be the corresponding inode of the root directory.
Read all its contents and find the desired directory entry (if the file’s in a nested directory).
The directory entry should point to its inode (ino in the struct). Then we read the directory
entries in the extents using that inode. We repeat these steps until we reach the file in its
containing directory data block. We use its directory entry metadata to navigate to the file’s
inode and read its data.

3



1. Part 1 Traces

Algo: FIFO Hit rate Hit count Miss count Overall eviction count Clean eviction count Dirty eviction count
blocked-50 99.6911% 1939658 6011 5961 2646 3315
blocked-100 99.7881% 1941547 4122 4022 1700 2322
matmul-50 52.4492% 1217013 1103352 1103302 551200 552102
matmul-100 53.7949% 1248239 1072126 1072026 535751 536275
repeatloop-50 33.4507% 190 378 328 133 195
repeatloop-100 82.7465% 470 98 0 0 0
simpleloop-50 22.7206% 770 2619 2569 23 2546
simpleloop-100 24.0189% 814 2575 2475 12 2463

Algo: LRU Hit rate Hit count Miss count Overall eviction count Clean eviction count Dirty eviction count
blocked-50 99.7477% 1940760 4909 4859 1993 2866
blocked-100 99.8141% 1942052 3617 3517 1304 2213
matmul-50 55.1396% 1279440 1040925 1040875 520001 520874
matmul-100 56.6329% 1314090 1006275 1006175 502761 503414
repeatloop-50 34.5070% 196 372 322 130 192
repeatloop-100 82.7465% 470 98 0 0 0
simpleloop-50 25.4352% 862 2527 2477 0 2477
simpleloop-100 25.4352% 862 2527 2427 0 2427

Algo: MRU Hit rate Hit count Miss count Overall eviction count Clean eviction count Dirty eviction count
blocked-50 13.1380% 255622 1690047 1689997 816578 873419
blocked-100 21.6730% 421684 1523985 1523885 735889 787996
matmul-50 15.9283% 369595 1950770 1950720 965842 984878
matmul-100 22.3449% 518483 1801882 1801782 892158 909624
repeatloop-50 49.2958% 280 288 238 91 147
repeatloop-100 82.7465% 470 98 0 0 0
simpleloop-50 1.4163% 48 3341 3291 205 3086
simpleloop-100 1.9475% 66 3323 3223 201 3022

Algo: CLOCK Hit rate Hit count Miss count Overall eviction count Clean eviction count Dirty eviction count
blocked-50 99.7491% 1940787 4882 4832 2009 2823
blocked-100 99.8015% 1941806 3863 3763 1523 2240
matmul-50 55.1394% 1279436 1040929 1040879 520004 520875
matmul-100 55.1721% 1280194 1040171 1040071 519673 520398
repeatloop-50 34.3310% 195 373 323 130 193
repeatloop-100 82.7465% 470 98 0 0 0
simpleloop-50 25.3762% 860 2529 2479 0 2479
simpleloop-100 25.3172% 858 2531 2431 1 2430

Algo: RAND Hit rate Hit count Miss count Overall eviction count Clean eviction count Dirty eviction count
blocked-50 99.6067% 1938017 7652 7602 3496 4106
blocked-100 99.7451% 1940709 4960 4860 2140 2720
matmul-50 58.5619% 1358850 961515 961465 480469 480996
matmul-100 86.6919% 2011569 308796 308696 154098 154598
repeatloop-50 54.4014% 309 259 209 78 131
repeatloop-100 82.7465% 470 98 0 0 0
simpleloop-50 22.6025% 766 2623 2573 24 2549
simpleloop-100 24.1074% 817 2572 2472 12 2460

4



2. Analysis

blocked:

blocked is more memory aware since it keeps accessing all the frequently accesses addresses
on line 194, which is the innermost loop of the entire program. This makes the memory to
be focused on a relatively small region. The overall hit rate is thus high with LRU, FIFO
and CLOCK. This is because:

1. Few other operations happen during the execution of the loop.

2. Most frequently accessed memory are being accessed in the innermost loop, causing
them to stay in the memory until the entire loop finishes.

This tricks LRU, FIFO and CLOCK to keep the frequently accessed pages in the memory.
MRU has the worst performance because it keeps paging out the frequently used pages.
The hit rates are similar for different memory size using LRU, FIFO and CLOCK since the
loop region is small and frequently accesses pages are preserved.

matmul:

matmul has more instructions in the outer loop, which might interrupt the focused accesses on
instruction/data pages in the innermost loop, causing worse hit rates and way more evictions
with all algorithms.
Both matmul and blocked are focused on a small region, which leads to worse performance
using MRU.

repeat loop:

It scans the array in multiple repetitions and every scan must be done before the next scan
can happen. This causes way more interruptions with a memory size of 50 since the memory
isn’t large enough to hold all elements and we will be constantly swapping out/in in every
repetition and require evictions. We still have most (not all) parts of the scan in the memory
since they hold the highest number of unique pages count. As such, the hit rate isn’t really
low.
However, with a larger memory size of 100, the memory is large enough to consume all the
scan data/instruction pages and repetitions won’t interrupt our scan. 100 seems to be enough
for all the memory accesses required for the repetitive scan and we have an eviction count of
0 using LRU, MRU, CLOCK, RAND and FIFO.
MRU has a higher size-50 hit rate, which is probably because we are swapping out the
polluted elements (array elements) constantly and keeping other parts intact which other
algorithms could choose pages of non-polluted elements as victims.

simple loop:

We are scanning a size 2 array in a single run.
This causes all pages to be constantly brought in and we don’t use these data pages after we
are done with it. This leads to a low hit rate in LRU, FIFO and CLOCK.

5



MRU has even lower hit rate since we need to access the container array during the execution
of every element write but some instruction/data patterns might have prevented the address
of the outer array or its access instructions from being kept in the memory for our very next
access (that happens right after it). We seem to be constantly paging in and out on line 18
in simpleloop.c.

3. Hand-created Traces

Trace 1: 1 2 3 4 5 6 2 7 8 2 9 10 3 4 3 5 11 12 7 6 13 10 6 1 8 14 15 9 13 16

13 17 8

Trace 1 Hit rate Hit count Miss count Overall eviction count Clean eviction count Dirty eviction count
lru-8 21.2121% 7 26 18 0 18
fifo-8 42.4242% 14 19 11 0 11
clock-8 33.3333% 11 22 14 0 14
optimal-8 45.4545% 15 18 10 ? ?

Trace 2: 1 2 3 4 2 4 5 6 3 7 8 6 5 6 9 10 7 6 11 12 5 6 10 12 13 10 7 14 12 15

8 9 13

Trace 2 Hit rate Hit count Miss count Overall eviction count Clean eviction count Dirty eviction count
lru-8 48.4848% 16 17 9 0 9
fifo-8 54.5455% 18 15 7 0 7
clock-8 48.4848% 16 17 9 0 9
optimal-8 54.5455% 18 15 7 ? ?

Trace 3: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Trace 3 Hit rate Hit count Miss count Overall eviction count Clean eviction count Dirty eviction count
lru-8 0.0000% 0 48 40 0 40
fifo-8 0.0000% 0 48 40 0 40
clock-8 0.0000% 0 48 40 0 40
optimal-8 33.3333% 16 32 24 ? ?

Trace 3 Optimal:

[0] Access: 1

[’1’, -1, -1, -1, -1, -1, -1, -1]

[1] Access: 2

[’1’, ’2’, -1, -1, -1, -1, -1, -1]

[2] Access: 3

[’1’, ’2’, ’3’, -1, -1, -1, -1, -1]

[3] Access: 4

[’1’, ’2’, ’3’, ’4’, -1, -1, -1, -1]

[4] Access: 5

[’1’, ’2’, ’3’, ’4’, ’5’, -1, -1, -1]

[5] Access: 6

6



[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, -1, -1]

[6] Access: 7

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, -1]

[7] Access: 8

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’]

[8] Access: 9

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’9’]

[9] Access: 10

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’10’]

[10] Access: 11

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’11’]

[11] Access: 12

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’12’]

[12] Access: 13

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’13’]

[13] Access: 14

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’14’]

[14] Access: 15

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’15’]

[15] Access: 16

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’16’]

[16] Access: 1

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’16’]

[17] Access: 2

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’16’]

[18] Access: 3

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’16’]

[19] Access: 4

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’16’]

[20] Access: 5

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’16’]

[21] Access: 6

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’16’]

[22] Access: 7

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’16’]

[23] Access: 8

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’8’, ’16’]

[24] Access: 9

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’9’, ’16’]

[25] Access: 10

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’10’, ’16’]

[26] Access: 11

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’11’, ’16’]

[27] Access: 12

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’12’, ’16’]

7



[28] Access: 13

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’13’, ’16’]

[29] Access: 14

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’14’, ’16’]

[30] Access: 15

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’15’, ’16’]

[31] Access: 16

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’15’, ’16’]

[32] Access: 1

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’15’, ’16’]

[33] Access: 2

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’15’, ’16’]

[34] Access: 3

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’15’, ’16’]

[35] Access: 4

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’15’, ’16’]

[36] Access: 5

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’15’, ’16’]

[37] Access: 6

[’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’15’, ’16’]

[38] Access: 7

[’7’, ’2’, ’3’, ’4’, ’5’, ’6’, ’15’, ’16’]

[39] Access: 8

[’8’, ’2’, ’3’, ’4’, ’5’, ’6’, ’15’, ’16’]

[40] Access: 9

[’9’, ’2’, ’3’, ’4’, ’5’, ’6’, ’15’, ’16’]

[41] Access: 10

[’10’, ’2’, ’3’, ’4’, ’5’, ’6’, ’15’, ’16’]

[42] Access: 11

[’11’, ’2’, ’3’, ’4’, ’5’, ’6’, ’15’, ’16’]

[43] Access: 12

[’12’, ’2’, ’3’, ’4’, ’5’, ’6’, ’15’, ’16’]

[44] Access: 13

[’13’, ’2’, ’3’, ’4’, ’5’, ’6’, ’15’, ’16’]

[45] Access: 14

[’14’, ’2’, ’3’, ’4’, ’5’, ’6’, ’15’, ’16’]

[46] Access: 15

[’14’, ’2’, ’3’, ’4’, ’5’, ’6’, ’15’, ’16’]

[47] Access: 16

[’14’, ’2’, ’3’, ’4’, ’5’, ’6’, ’15’, ’16’]

8


